유승화 교수팀, 사출 제조업 난제 해결 공정 최적화 해법 제시
우리가 쓰는 플라스틱 제품 대부분은 녹인 플라스틱을 틀에 넣어 같은 제품을 대량으로 찍어내는 ‘사출성형’공정으로 만든다. 하지만 조건이 조금만 달라도 불량이 생겨, 그동안은 숙련자의 감에 의존해 왔다. 이제 국내 대학 연구진이 고숙련자 은퇴와 외국인 인력 증가로 제조 지식이 단절될 수 있다는 우려에 대해 카지노 드라마로 공정을 스스로 최적화하고 지식을 전수하는 해법을 내놨다.
K카지노 드라마ST는기계공학과 유승화 교수 연구팀(기계공학과·이노코어 PRISM-카지노 드라마 센터)이 사출 공정을 스스로 최적화하는 생성형 카지노 드라마 기술과, 현장 지식을 누구나 활용할 수 있는 LLM 기반 지식 전이 시스템을 세계 최초로 개발하고, 그 성과를 세계 최고 수준의 국제학술지에 연속 게재했다고 22일 밝혔다.
첫 번째 성과는 환경 변화나 품질 조건에 따라 자동으로 최적 공정 조건을 추론하는 생성형 카지노 드라마 기반 공정추론 기술이다. 기존에는 온도나 습도, 원하는 품질 수준이 바뀔 때마다 숙련자가 시행착오를 거쳐 조건을 다시 맞춰야 했다.
연구팀은 실제 사출 공장에서 수개월간 수집한 환경 데이터와 공정 파라미터를 활용해, 확산 모델(Diffusion Model) 기반으로 목표 품질을 만족하는 공정 조건을 역설계하는 기술을 구현했다.
여기에 실제 생산을 대신하는 대리모델(Surrogate Model)을 함께 구축해, 공정을 돌리지 않고도 품질을 미리 예측할 수 있도록 했다. 그 결과 기존 공정 예측에 활용되던 기존 대표 기술인 GAN·VAE 기반 모델의 오류율(23~44%)을 크게 낮춘 1.63%의 오류율을 달성했으며, 실제 공정 적용 실험에서도 카지노 드라마가 제시한 조건대로 양품 생산이 확인돼 현장 활용 가능성을 입증했다.
두 번째 성과는 고숙련자 은퇴와 다국어 작업 환경에 대응하는 LLM 기반 지식 전이 시스템 ‘IM-Chat’이다. IM-Chat은 거대언어모델(LLM)과 검색 증강 생성(RAG)을 결합한 멀티에이전트 카지노 드라마 시스템으로, 초급 작업자 또는 외국인 작업자가 제조 현장에서 겪는 문제에 대해 적절한 해결책을 제공하는 제조 현장용 카지노 드라마 도우미다.
작업자가 자연어로 질문하면, 카지노 드라마가 이를 이해해 필요에 따라 생성형 공정추론 카지노 드라마를 자동으로 호출하고, 최적 공정 조건 계산과 함께 관련 기준과 배경 설명까지 동시에 제공한다.
예를 들어 “현재 공장 습도가 43.5%일 때 적정 사출 압력은?”이라는 질문에 카지노 드라마는 최적 조건을 계산하고, 관련 매뉴얼 근거까지 함께 제시한다. 다국어 인터페이스를 지원해 외국인 작업자도 동일한 수준의 의사결정 지원을 받을 수 있다.
이번 연구는 사출 공정을 넘어 금형, 프레스, 압출, 3D 프린팅, 배터리, 바이오 제조 등 다양한 산업으로 확장 가능한 제조 카지노 드라마 전환(AX) 핵심 기술로 평가된다.
특히 생성형 카지노 드라마와 LLM 에이전트를 툴 콜링(Tool-Calling) 방식으로 통합해, 카지노 드라마가 스스로 판단하고 필요한 기능을 호출하는 자율 제조 카지노 드라마 패러다임을 제시했다는 점에서 의미가 크다.
유승화 교수는 “공정을 스스로 최적화하는 카지노 드라마와, 현장 지식을 누구나 활용할 수 있는 LLM을 결합해 제조업의 본질적 문제를 데이터 기반으로 해결한 사례”라며 “앞으로 다양한 제조 공정으로 확장해 산업 전반의 지능화와 자율화를 가속하겠다”고 말했다.
이번 연구는 기계공학과 김준영·김희규·이준형 박사과정이 공동 제1저자로 참여하고, 유승화 교수가 교신저자로 참여했으며, 공학·산업 분야 세계 1위 국제학술지인 ‘저널 오브 매뉴팩처링 시스템즈(Journal of Manufacturing Systems, JCR 1/69, IF 14.2)’ 4월호와 12월호에 연속 게재됐다.
(※ 논문명1: Development of an Injection Molding Production Condition Inference System Based on Diffusion Model, DOI: https://doi.org/10.1016/j.jmsy.2025.01.008, ※논문명2: IM-Chat: A multi-agent LLM framework integrating tool-calling and diffusion modeling for knowledge transfer in injection molding industry, DOI: https://doi.org/10.1016/j.jmsy.2025.11.007)
한편, 이번 연구는 과학기술정보통신부·중소벤처기업부·산업통상부의 지원을 받았다.
최지호 기자 jhochoi51@irobotnews.com
